Probabilités

Nom (court)

Probabilités

Mounir Bezzarga

Institut préparatoire aux études d'ingénieurs de Tunis Diapo ${\bf 1}$

<u>Probabilités</u>

(D) Denombrabilité:

E un ensemble quelconque est dit denombrable si E est en bijection avec \mathbb{N} . (E) \mathbb{Z} et \mathbb{Q} sont denombrables.

$$\cdots$$
.

$$\varphi:\mathbb{Z}\to\mathbb{N}$$

$$\mathfrak{p} \to 2p$$
 si p est positive

$$\mathfrak{p} \to -2 \textit{p} + 1$$
 si \textit{p} est strictement negatif

$$\varphi\;$$
 est bejective

N.B

A et B denombrables alors $A \times B$ denombrables.

$$\mathbb{Q} \hookrightarrow \mathbb{Z} \times \mathbb{N}^*$$

$$x \in \mathbb{Q}; \exists p \in \mathbb{Z}, \ \exists q \in \mathbb{N}^*/x = \frac{p}{q}$$

$$p \wedge q = 1$$

- (D) Au plus Denombrable:
- \overline{E} est dit au plus denombrables si E est fini ou denombrable
- I- Tribu des Evenements:
- "Ω" : un ensemble de possibles: Univers
- -A un événement si $A\subset \Omega$.
- $-\tau\subset\mathcal{P}(\Omega).$
- (D) Tribu:
- Soit Ω denombrable

$$\tau \subset P(\Omega)$$
 est dite tribu

(i)
$$\Omega \subset \tau$$

(2i)
$$A \in \tau \Longrightarrow \overline{A} := A^c \in \tau$$

(3i)
$$(A_n)_n \in \tau^{\mathbb{N}} \Longrightarrow \bigcup_{n \in \mathbb{N}} A_n \in \tau$$
.

N.B

(i)
$$\phi \in \tau$$
. ((i) et (2i))

$$(2i) (A_n)_n \in \tau^{\mathbb{N}} \Longrightarrow \bigcap_{n \in \mathbb{N}} A_n \in \tau. \quad ((3i) \text{ et } (2i))$$

$$(\bigcap_{n\in\mathbb{N}}A_n)^c=\bigcup_{n\in\mathbb{N}}A_n^c$$

$$A_n \in \tau \Longrightarrow A_n^c \in \tau \Longrightarrow \bigcup A_n^c \in \tau$$

$$\Rightarrow (\bigcap_{n\in\mathbb{N}} A_n)^c = \bigcup_{n\in\mathbb{N}} A_n^c \in \tau \stackrel{(2i)}{\Longrightarrow} \bigcap_{n\in\mathbb{N}} A_n \in \tau$$

(D) Probabilité:

 (Ω, τ) un espace probabilisable. On appelle probabilité sur (Ω, τ) toute application $p: \tau \to [0, 1]$ vérifiant:

(i) $p(\Omega) = 1$

(2i) $(A_n) \in \tau^N$ au plus denombrable tel que $A_n \cap A_m = \emptyset \ \forall n \neq m$ (deux à deux incompatibles) $\Longrightarrow p(\bigcup A_n) = \sum_n p(A_n)$.

On appelle alors: (Ω, τ, p) : espace probabilisé.

(T) <u>Limite monotone</u>: (Ω, τ, p) espace probabilisé. Soit $(A_n)_n \in \tau^{\mathbb{N}}$ croissante pour l'inclusion alors

$$\lim_{n\to\infty} p(A_n) = p(\bigcup_{n\in\mathbb{N}} A_n)$$

Preuve:

- $\bullet \bigcup_{k=0}^{n} A_{k} = A_{n}, \forall n \in \mathbb{N} \ (A_{1} \subset A_{2} \subset ... \subset A_{n})$
- $\bullet A_n \subset A_{n+1} \Longrightarrow p(A_n) \leq p(A_{n+1})$ en effet

$$A_{n+1} = A_n \cup (A_{n+1} \setminus A_n)$$

$$\implies p(A_{n+1}) = p(A_n) + \underbrace{p(A_{n+1} \setminus A_n)}_{\in [0,1]}$$

$$\implies p(A_{n+1}) > p(A_n)$$

$$\implies (p(A_n))_n \nearrow \text{major\'ee par } 1 \text{ et donc converge.}$$

Soit

$$A'_{n} = A_{n} \setminus \bigcup_{k=0}^{n-1} A_{k}$$
$$= A_{n} \setminus A_{n-1}$$
$$A' = \bigcup_{k=0}^{n-1} A_{k}$$

$$A_n' \bigcap A_m' = \varnothing \text{ si } n \neq m \text{ et } \bigcup_{n \in \mathbb{N}} A_n' = \bigcup_{n \in \mathbb{N}} A_n$$

$$p(\bigcup_{n\in\mathbb{N}}A_n) = p(\bigcup_{n\in\mathbb{N}}A'_n) = p(A_0) + \sum_{n=0}^{+\infty} \underbrace{p(A'_n)}_{p(A_n) - p(A_{n-1})}$$

$$p(\bigcup_{n\in\mathbb{N}}A_n) = \sum_{n=1}^{+\infty} \left(p(A_n) - p(A_{n-1})\right) + p(A_0)$$

$$= \lim_{n\to\infty} \sum_{n=1}^{N} \left(p(A_n) - p(A_{n-1})\right) + p(A_0)$$

$$= \lim_{n\to\infty} p(A_n) - p(A_0) + p(A_0)$$

$$= \lim_{n\to\infty} p(A_n)$$

Alors

$$\lim_{n\to\infty}p(A_n)=p(\bigcup_{n\in\mathbb{N}}A_n)$$

Limite decroissante: (C)

 $(A_n)_n \in \tau^{\mathbb{N}}$ decroissante pour l'inclusion. Alors $(p(A_n))_n$ converge et on a:

$$\lim_{n\to\infty} p(A_n) = p(\bigcap_{n\in\mathbb{N}} A_n)$$

Preuve:

$$\overline{\Omega = A_n} \cup A_n^c \Longrightarrow 1 = p(A_n) + p(A_n^c)$$

$$A_{n+1} \subset A_n$$

$$A_n^c \subset A_{n+1}^c$$

 $(A_n^c)_n$ suite croissante de $\tau, (p(A_n^c))_n$ converge et on a:

$$\lim_{n\to\infty}p(A_n^c)=p(\bigcup A_n^c)$$

$$\exists \lim_{n} (1 - \rho(A_n)) \in [0, 1]$$

$$\exists \lim p(A_n) \in [0,1]$$

$$\lim_{n}(1-p(A_n)) = p((\bigcap_{n}A_n)^c)$$

$$= 1 - p(\bigcap_{n} A_n)$$

$$\Longrightarrow \lim_{n} p(A_{n}) = p(\bigcap_{n} A_{n})$$

N.B.

$$(A_n)_n \in \tau^{\mathbb{N}} \Longrightarrow p\left(\bigcup_{n \in \mathbb{N}} A_n\right) \leq \sum_{n=0}^{+\infty} p(A_n)$$

$$A'_{n} = A_{n} \setminus \bigcup_{k=0}^{\stackrel{\longleftarrow}{n-1}} A_{k} \text{ si } n \in \mathbb{N}^{*}$$

$$A'_{0} = A_{0}$$

$$\implies A'_{n} \bigcap A'_{m} = \emptyset \text{ si } n \neq m$$

$$\bigcup_{n=0}^{+\infty} A'_n = \bigcup_{n=0}^{+\infty} A_n$$

$$p(\bigcup_{n=0}^{+\infty} A_n) = p(\bigcup_{n=0}^{+\infty} A'_n) = \sum_{n=0}^{+\infty} p(A'_n)$$

or
$$A'_n \subset A_n \Longrightarrow \sum_{n=0}^{+\infty} p(A'_n) \le \sum_{n=0}^{+\infty} p(A_n)$$

Alors

$$p\bigg(\bigcup^{+\infty}A_n\bigg)\leq \sum^{+\infty}p(A_n)$$

$$p_A(B) = p(B|A) = \frac{p(A \cap B)}{p(A)}.$$

L'application : $p_A : \tau \to [0,1]$, est une probabilité dite probabilité conditionnelle

relativement à
$$\frac{A}{\rho(A)}$$
. (i) $p_A(\Omega) = \frac{p(A) \cap \Omega}{p(A)} = \frac{p(A)}{p(A)} = 1$

(2i)
$$(A_n)_n \in \tau^{\mathbb{N}}, A_n \cap A_m = \emptyset$$
 si $n \neq m$

$$(A \cap A_n) \cap (A \cap A_m) = \emptyset \text{ si } n \neq m$$

$$(3i) \ p\left(\bigcup_{n=0}^{+\infty} (A \cap A_n)\right) = \sum_{n=0}^{+\infty} p(A \cap A_n)$$

$$\longleftrightarrow$$

$$P_A(\bigcup_{n \in \mathbb{N}} A_n) = \frac{p(A \cap (\bigcup_{n \in \mathbb{N}}^{+\infty} A_n))}{p(A)} = \frac{p(\bigcup_{n \in \mathbb{N}}^{+\infty} (A \cap A_n))}{p(A)}$$

$$= \sum_{n=0}^{+\infty} \frac{p(A \cap A_n)}{p(A)} = \sum_{n=0}^{+\infty} p_A(A_n) \text{ c.q.p.c}$$

N.B

$$p(\overline{B}|A) = 1 - p(B|A)$$

$$p_A(\overline{B}) = 1 - p_A(B)$$

$$p(B|A) + p(B|\overline{A}) =??$$

(D) Formule composé de Probabilités

(D) Formule de Probabilités totales:

$$(A_n)_n \in \tau^{\mathbb{N}} / \cup_{n \in \mathbb{N}} A_n = \Omega; A_n \cap A_m = \emptyset \text{ si } n \neq m$$

$$\text{avec } p(A_n) > 0; \forall n \in \mathbb{N}$$

$$p(B) = \sum_{n=0}^{+\infty} p(A_n) \cdot p(B|A_n)$$

$$B = B \cap \Omega = B \cap (\cup_{n \in \mathbb{N}} A_n)$$

$$= \cup_{n \in \mathbb{N}} (B \cap A_n)$$

$$(B \cap A_n) \cap (B \cap A_m) = \emptyset \text{ si } n \neq m$$

$$p(B) = p(\bigcup_{n \in \mathbb{N}} B(\cap A_n)) = \sum_{n=0}^{+\infty} p(B \cap A_n)$$

$$= \sum_{n=0}^{+\infty} p(A_n).p(B|A_n) \text{ (Formule composé de Probabilités)}$$

(D) Formule de Boyes:

$$(A_n)_n \in \tau^{\mathbb{N}} / \cup_{n \in \mathbb{N}} A_n = \Omega; A_n \cap A_m = \emptyset \text{ si } n \neq m$$

$$p(A_n)>0$$

soit $B \in \tau/p(B) > 0$. Alors:

$$p(A_m|B) = \frac{p(A_m).p(B|A_m)}{\sum_{n=0}^{+\infty} p(A_n).p(B|A_n)}$$

Preuve:

$$\begin{aligned}
p(A_{m}) > 0; p(B) > 0) \\
p(A_{m} \cap B) &= p(A_{m}) \cdot p(B|A_{m}) \\
&= p(B) \cdot p(A_{m}|B) \\
p(A_{m}) \cdot p(B|A_{m}) &= p(B) \cdot p(A_{m}|B) \\
p(A_{m}|B) &= \frac{p(A_{m}) \cdot p(B|A_{m})}{p(B)}
\end{aligned}$$

or d'après la formule de probabilités totals on aura

$$p(A_m|B) = \frac{p(A_m).p(B|A_m)}{\sum_{n=0}^{+\infty} p(A_n).p(B|A_n)} \quad \text{c.q.p.c}$$

Indépendance en probabilités:

(D) Événements Indépendants:

 $\overline{A,B} \in \tau$ sont indépendants si:

$$p(A \cap \overline{B}) = p(A).p(B)$$

N.B Si $A, B \in \tau$ indépendants tel que p(A) > 0 et p(B) > 0, alors:

$$p(A|B) = p(A)$$

$$p(B|A) = p(B)$$

En effet:

$$p(A|B) = p_B(A) = \frac{p(A \cap B)}{p(B)} = \frac{p(A).p(B)}{p(B)} = p(A)$$

Soit $A, B \in \tau$ indépendants. Alors:

- (i) A et $\overline{B} = B^c$ sont indépendants.
- (2i) \overline{A} et B sont indépendants.
- (3i) \overline{A} et \overline{B} sont indépendants.

Preuve:

(i)

$$p(A).p(\overline{B}) = p(A) \times (1 - p(B))$$

$$= p(A) - p(A).p(B)$$

$$= p(A) - p(A \cap B)$$

$$= p(A|(A \cap B))$$

$$= p(A \cap B^{c})$$

$$= p(A \cap \overline{B})$$

Alors A et B indépendants.

- \overline{A} et \overline{B} indépendants.
- (2i) \overline{A} et \overline{B} indépendants $\psi(i)$
- $\overline{\overline{A}}$ et $\overline{\overline{\overline{B}}}$ indépendants
- \overline{A} et B indépendants.

(D) Independance mutuelle de *n* évenements:

Soit $A_1;; A_n \in \tau$ des évenements. On dit que $A_1;; A_n$ sont mutuellement indépendants si $\forall J \subset \{1;; n\}$. On a:

$$p(\cap_{j\in J}A_j)=\prod_{j\in J}p(A_j).$$

$$A\cap B\cap C=\varnothing$$
 malgré

$$A \cap B \neq \emptyset$$

$$A \cap C \neq \emptyset$$

$$B \cap C \neq \emptyset$$

N.B: Il arrive que 3 évenements A, B, C soient deux à deux indépendants Alors que A, B, C ne le sont pas. cas oú $A \cap B = \emptyset$.

Probabilités: Exercices:

Exercice 1:

Sur un stock de 100 dés, 25 sont pipés. La probabilité d'obtenir 6 sur un dé pipé est $\frac{1}{2}.$

1/ Õn choisit un dé, on le lance et on obtient 6. Quel est la probabilité que ce dé soit pipé?

 $\diamond \ \sigma_1$: "obtenir 6 ou première lancé"

♦ P : "le dé est pipé"

$$\rho(P) = \frac{25}{100} = \frac{1}{4}
\rho(\sigma_1|P) = \frac{1}{2}
\rho(P|\sigma_1) = \frac{\rho(P) \cdot \rho(\sigma_1|P)}{\rho(P) \cdot \rho(\sigma_1|P) + \rho(\overline{P}) \cdot \rho(\sigma_1|\overline{P})}
= \frac{\frac{1}{4} \times \frac{1}{2}}{\frac{1}{4} \times \frac{1}{2} + \frac{3}{4} \times \frac{1}{6}} = \frac{\frac{1}{8}}{\frac{1}{8} + \frac{1}{8}} = \frac{1}{2}
\rho(P|\sigma_1) = \frac{1}{2}$$

2/ On relance le dé et on obtient à nauveau 6. Quel est la probabilité que le dé soit pipé?

 $\diamond \ \sigma_2$: "obtenir 6 ou deuxième lancé"

$$p(P|\sigma_1 \cap \sigma_2) = \frac{p(P).p(\sigma_1 \cap \sigma_2 \setminus P)}{p(P).p(\sigma_1 \cap \sigma_2 \mid P) + p(\overline{P}).p(\sigma_1 \cap \sigma_2 \mid \overline{P})}$$

$$= \frac{\frac{1}{4} \times (\frac{1}{2})^2}{\frac{1}{4} \times (\frac{1}{2})^2 + \frac{3}{4} \times (\frac{1}{6})^2}$$

$$p(P|\sigma_1 \cap \sigma_2) = \frac{3}{4}$$

Exercice 2:

Dans une urne U_1 sont deposées b_1 boules blanches et n_1 boules noirs. Dans une urne U_2 sont deposées b_2 boules blanches et n_2 boules noirs .

- On prélève une boule de U_1 et on remet dans U_2 : puis on tire une boule dans U_2 et on constate qu'elle est blanche.

Quelle est la probabilité que la première boule l'est aussi?

Solution

- $\diamond \ \ \sigma_1$: "obtenir une boule blanche au première tirage de U_1
- ♦ A : "obtenir une boule blanche au deuxième tirage de U2

$$p(\sigma_1) = \frac{b_1}{b_1 + n_1}$$

 $p(A|\sigma_1) = \frac{b_2 + 1}{b_2 + n_2 + 1}$

Probabilités

Nom (court)

$$\begin{array}{lcl} \rho(\sigma_{1}|A) & = & \frac{\rho(\sigma_{1}).\rho(A|\sigma_{1})}{\rho(\sigma_{1}).\rho(A|\sigma_{1}) + \rho(\overline{\sigma_{1}}).\rho(A|\overline{\sigma_{1}})} \\ & = & \frac{\frac{b_{1}}{b_{1}+n_{1}} \times \frac{b_{2}+1}{b_{2}+n_{2}+1}}{\frac{b_{1}}{b_{1}+n_{1}} \times \frac{b_{2}+1}{b_{2}+n_{2}+1} + \frac{n_{1}}{b_{1}+n_{1}} \times \frac{b_{2}}{b_{2}+n_{2}+1}} \\ & = & \frac{b_{1}(b_{2}+1)}{b_{1}(b_{2}+1) + n_{1}b_{2}} \end{array}$$

Exercice 3:

Des personnes A_1, \ldots, A_n se communiquent successivement une information du type Vrai-Faux.

Chaque A_k transmet l'information à A_{k+1} ; $k \in [|1,n-1|]$ de façon correcte avec la probabilité $(\alpha \in]0,1[)$. En la transformant en son contraire avec la probabilité $(1-\alpha)$. Calculer P_n probabilité pour que l'information reçu par A_n soit celle qui a été émise par A_1 . Puis calculer $\lim P_n$?

 $n \rightarrow \infty$

$$\frac{\text{Solution:}}{A_k} \hookrightarrow A_{k+1}$$

$$\begin{cases} P_{n+1} = \alpha P_n + (1 - \alpha)(1 - P_n) \\ P_1 = 1 \end{cases}$$

$$P_n = (2\alpha - 1)P_n + 1 - \alpha$$

Methode: on pose $V_n=P_n-\lambda, \lambda\in\mathbb{R}$ et on trouve λ de sorte que (V_n) soit geométrique.

$$V_{n+1} = P_{n+1} - \lambda = (2\alpha - 1)P_n + 1 - \alpha - \lambda$$

$$= (2\alpha - 1)\left(P_n + \frac{1 - \alpha - \lambda}{2\alpha - 1}\right)$$

$$= (2\alpha - 1)V_n \text{ ssi } \lambda = \frac{\lambda + \alpha - 1}{2\alpha - 1}, \quad (\text{si } \alpha \neq \frac{1}{2})$$

ssi

$$\lambda(2\alpha-1)=\lambda+\alpha-1$$

$$\lambda = \frac{\alpha - 1}{2\alpha - 2} = \frac{1}{2}$$

 \Rightarrow $V_n=P_n-rac{1}{2}$ défini une S.G de raison q=2lpha-1

$$V_n = q^{n-1} \cdot V_1 = (2\alpha - 1)^{n-1} (P_1 - \frac{1}{2})$$

$$P_n - \frac{1}{2} = \frac{1}{2} (2\alpha - 1)^{n-1}$$

$$P_n = \frac{1}{2} + \frac{1}{2} (2\alpha - 1)^{n-1} - \frac{1 + (2\alpha - 1)^{n-1}}{2} = \frac{1}{2} (2\alpha - 1)^{n-1} - \frac{1}{2} + \frac{1}{2} (2\alpha - 1)^{n-1} = \frac{1}{2} + \frac{1}{$$

$$P_n = \frac{1}{2} + \frac{1}{2}(2\alpha - 1)^{n-1} = \frac{1 + (2\alpha - 1)^{n-1}}{2}$$

d'où:
$$P_n = \frac{1+(2\alpha-1)^{n-1}}{2}$$
; $n \in \mathbb{N}^*$

$$0<\alpha<1\Rightarrow |2\alpha-1|<1$$

$$\Rightarrow (2\alpha - 1)^{n-1} \underset{n \to \infty}{\rightarrow} 0 \Rightarrow \underset{n \to \infty}{\lim} P_n = \frac{1}{2}.$$

Probabilités

(court)

Exercice 4:

On dispose de N+1 urnes numérotés de 0 à N. L'urne k contient k boules blanches et N-k boules noires. On choisit au hazard d'une urne et on tire n fois de suite une boule avec remise après chaque tirage.

Quelle est la probabilité que le tirage suivant donne encore une boule blanche sachant que, au cours des n premiers, seules des boules blanches ont été tirées?

Soit U_k : "on choisit l'urne numero k"; $0 \le k \le N$

 B_n : "tirer n boules blanches d'affilée"

Dans une urne U_k on a k boules blanches et (N-k) boules Noire

$$p(B_n|U_k) = \left(\frac{C_k^1}{C_N^1}\right)^n = \left(\frac{k}{N}\right)^n$$

$$p(B_n) = \sum_{k=0}^{N} p(U_k).p(B_n|U_k)$$

or $p(U_i) = p(U_i) \ \forall i \neq j \ \text{avec} 0 < i < j \leq N$, d'ou:

$$p(B_n) = \sum_{k=0}^{N} \frac{1}{N+1} \cdot \left(\frac{k}{N}\right)^n$$
$$= \frac{1}{N+1} \cdot \sum_{k=1}^{N} \left(\frac{k}{N}\right)^n$$

$$p(B_{n+1}|B_n) = \frac{p(B_{n+1} \cap B_n)}{p(B_n)}$$

Or $B_{n+1} \subset B_n \Rightarrow B_{n+1} \cap B_n = B_{n+1}$

$$\Rightarrow p(B_{n+1}|B_n) = \frac{p(B_{n+1})}{p(B_n)}$$

$$= \frac{\frac{1}{N+1} \cdot \sum_{k=1}^{N} (\frac{k}{N})^{n+1}}{\frac{1}{N+1} \cdot \sum_{k=1}^{N} (\frac{k}{N})^{n}}$$

$$= \frac{\sum_{k=1}^{N} (\frac{k}{N})^{n+1}}{\sum_{k=1}^{N} (\frac{k}{N})^{n}}$$

2) Calculer la limite de cette probabilité lorsque $N \to +\infty$.

$$\rho(B_n) = \frac{1}{N+1} \sum_{k=1}^{N} (\frac{k}{N})^n \\
= \frac{N}{N+1} \cdot (\frac{1}{N} \cdot \sum_{k=1}^{N-1} (\frac{k}{N})^n + \frac{1}{N})$$

Démonstration:

$$\frac{1}{N}\sum_{k=0}^{N-1}(\frac{k}{N})^n = \frac{1}{N}\cdot\sum_{k=0}^{N-1}(0+k\cdot\frac{1-0}{N})^n$$

soit
$$f:[0,1] \to \mathbb{R}$$

 $t \to t^n$ et alors

$$\frac{1}{N} \sum_{k=0}^{N-1} (\frac{k}{N})^n = \frac{1}{N} \cdot \sum_{k=0}^{N-1} f(0 + k \cdot \frac{1-0}{N})$$

$$\Rightarrow \lim_{N \to \infty} \frac{1}{N} \sum_{k=0}^{N-1} (\frac{k}{N})^n = \int_0^1 t^n \cdot dt = \frac{1}{n+1}.$$

$$\Rightarrow \lim_{N \to \infty} p(B_n) = \frac{1}{n+1}$$

$$\Rightarrow \lim_{N\to\infty} p(B_{n+1}|B_n) = \frac{\frac{1}{n+2}}{\frac{1}{n+1}} = \frac{n+1}{n+2}$$

Exercice 5:(TD)

Soit s>1 et $\lambda\in\mathbb{R}$. On pose $\xi(s)=\sum_{n=1}^{+\infty}\frac{1}{n^s}$ et $\forall n\in\mathbb{N}^*; P\{n\}=\frac{\lambda}{n^s}$ soit δ $\Omega=\mathbb{N}^*$ l'univers

$$\diamond \ \ au = \mathcal{P}(\Omega)$$
 la tribu

$$P: \tau \to [0,1]$$

$$\{n\} \to p\{n\} = \frac{\lambda}{n^*}$$

1/ pour que P définit une probabilité sur l'espace probabilisable $(\mathbb{N}^*,P(\mathbb{N}^*))$ il faut que P arrive dans [0,1].

$$p(\{1\}) = \lambda \in [0,1].$$

$$\hat{C.N} \hat{\lambda} \in [0,1].$$

P est une probabilité sur (Ω, τ)

$$\Rightarrow P(\Omega) = P(\mathbb{N}^*) = 1.$$

i.e
$$\sum_{n=1}^{+\infty} P(n) = 1 \Leftrightarrow \sum_{n=1}^{+\infty} \frac{\lambda}{n^s} = 1.$$

$$\Rightarrow \sum_{n=1}^{+\infty} \frac{\lambda}{n^s} = \lambda \sum_{n=1}^{+\infty} \frac{1}{n^s} \Rightarrow \lambda = \frac{1}{\xi(s)}$$

Probabilités

(court)

Réciproquement:

$$\overline{\Omega = \mathbb{N}^*; \ \tau = \mathcal{P}(\Omega)} = \mathcal{P}(\mathbb{N}^*)$$

$$\xi(s) = 1 + \sum_{n=2}^{+\infty} \frac{1}{n^s} \ge 1$$

$$\Rightarrow \lambda = \frac{1}{\xi(s)} \in [0, 1]$$

Ainsi choisi

 $orall (A_n)_n \in au^\mathbb{N}; \ A_n \cap A_m = arnothing \ orall n
eq m.$ On a

$$P(\bigcup_{n=0}^{+\infty} A_n) = \sum_{k \in \bigcup_{n=0}^{+\infty} A_n} P(\{k\})$$

$$= \sum_{n=0}^{+\infty} \sum_{k \in A_n} P(\{k\})$$

$$= \sum_{n=0}^{+\infty} P(A_n)$$

Alors p est une probabilité sur (Ω, τ) i.e. $(\Omega, \mathcal{P}(\Omega), p) = (\mathbb{N}^*, \mathcal{P}(\mathbb{N}^*), p)$ est un espace probabilisé.

 $2/ \bullet B_n = \{n\}; n \in \mathbb{N}^*$

- $\mathbb{P} = \{ p \in \mathbb{N}^* / p \text{ premier} \}$
- $A_n = \{n \in \mathbb{N}^*/p|_n\};$

$$P(A_p) = P\{n \in \mathbb{N}^* / \exists k \in \mathbb{N}^* \text{ avec } n = kp\}$$

$$= \sum_{k=1}^{+\infty} p(\{kp\})$$

$$= \sum_{k=1}^{+\infty} \frac{\lambda}{(kp)^s} = \frac{\lambda}{p^s} \sum_{k=1}^{+\infty} \frac{1}{k^s}$$

$$= \frac{\lambda \xi(s)}{p^s} = \frac{1}{p^s}$$

$$\Rightarrow P(A_p) = \frac{1}{p^s}.$$

 $3/p_1 < p_2 < ... < p_m$ suite finie de nombres premiers, on montrera que :

$$P(A_{p_1} \cap A_{p_2} \cap ... A_{p_m}) = \prod_{k=1}^m P(A_{p_k})$$

Probabili<u>tés</u>

(court)

$$\begin{array}{ll} p_1;\, p_2;\, ...;\, p_m|_n \Leftrightarrow & p_1\times p_2\times ...\times p_m|_n \\ n\in A_{p_1}\cap A_{p_2}\cap\cap A_{p_m} \\ \text{\'equivalent \'a } n\in A_{p_1\times p_2\times ...\times p_m} \end{array}$$

$$A_{p_{1}} \cap A_{p_{2}} \cap \cap A_{p_{m}} = A_{p_{1} \times p_{2} \times ... \times p_{m}}$$

$$\Rightarrow P(A_{p_{1}} \cap A_{p_{2}} \cap \cap A_{p_{m}}) = P(A_{p_{1} \times p_{2} \times ... \times p_{m}})$$

$$= P(x.\mathbb{N}^{*}) \text{ où } x = p_{1} \times p_{2} \times ... \times p_{m}$$

$$= \sum_{k=1}^{+\infty} P(\{x.k\}) = \sum_{k=1}^{+\infty} \frac{\lambda}{(xk)^{s}} = \frac{\lambda}{x^{s}} \sum_{k=1}^{+\infty} \frac{1}{k^{s}}$$

$$= \frac{\lambda}{x^{s}} \xi(1) = \frac{1}{x^{s}} = \frac{1}{p_{1}^{s}} \times \frac{1}{p_{2}^{s}} \times \times \frac{1}{p_{m}^{s}}$$

$$= P(A_{p_{1}}) \cdot P(A_{p_{2}}) \cdot \cdot P(A_{p_{m}})$$

d'où

$$P(A_{p_1} \cap A_{p_2} \cap \cap A_{p_m}) = \prod_{k=1}^m P(A_{p_k})$$

On conclut alors que $(A_p)_{p\in\mathbb{P}}$ est un système mutuellement indépendant d'évènements.

On chosse les nombres premiers:

$$p_1 < ... < p_m < .. < .. <$$

en ordre croissant

$$\mathbb{P}=\{p_1,...,p_m,...\}$$

$$E_m = \bigcap_{k=1}^m \overline{A}_{p_k} \supset E_{m+1} \operatorname{car} E_{m+1} = E_m \cap \overline{A}_{p_{m+1}}$$

 \Rightarrow $(E_m)_m$ suite decroissante pour l'inclusion.

$$E = \bigcap_{p \in \mathbb{P}} \overline{A}_p = \bigcap_{m=0}^{+\infty} E_m$$

 $n \in E \Leftrightarrow n$ n'est pas divisible par $p \forall p \in \mathbb{P} \Leftrightarrow n = 1$ d'où $E = \{1\}$.

 $5/(E_m) \searrow d'évènements d'après le théorème de la limite décroissante on a:$

$$\lim_{m \to \infty} P(E_m) = P(\bigcap_{m \in \mathbb{N}^*} E_m) = P(E)$$

$$= \lambda = \frac{1}{\xi(s)}$$

$$\Rightarrow \frac{1}{\xi(s)} = \lim_{m \to \infty} P(E_m)$$

$$= \lim_{m \to \infty} P(\bigcap_{k=1}^m \overline{A_{p_k}})$$

$$\Rightarrow \frac{1}{\xi(s)} = \lim_{m \to \infty} \prod_{k=1}^m P(\overline{A_{p_k}})$$

(car si $(A_\rho)_{\rho\in\mathbb{P}}$ est mutuellement independants \Rightarrow $(\overline{A_\rho})_{\rho\in\mathbb{P}}$ est mutuellement independants)

$$= \lim_{m \to \infty} \prod_{k=1}^{m} (1 - p(A_{p_k}))$$

$$\Rightarrow \xi(s) = \lim_{m \to \infty} \prod_{k=1}^{m} \frac{1}{(1 - \frac{1}{p_s^s})} = \prod_{k=1}^{+\infty} \frac{1}{(1 - \frac{1}{p_s^s})} = \prod_{p \in \mathbb{P}} \frac{1}{(1 - \frac{1}{p^s})}$$

Probabilités

(court)

Exercice 4: TD:

 $1/(A_n)_n$ suite d'évènements 2 à 2 incompatibles d'une espace probabilisé (Ω, \mathcal{A}, P) . Montre que $\lim_{n \to \infty} P(A_n) = 0$?

 $(A_n)_n$ 2 à 2 incompatibles

$$\Rightarrow P(\bigcup_{n\in\mathbb{N}} A_n) = \sum_{n=0}^{+\infty} P(A_n)$$

$$\bigcup_{n\in\mathbb{N}} A_n \subset \Omega \Rightarrow P(\bigcup_{n\in\mathbb{N}} A_n) \le 1$$

$$\sum_{n\in\mathbb{N}} P(A_n) \longrightarrow P(\bigcup_{n\in\mathbb{N}} A_n)$$

$$\Rightarrow \lim_{n\to\infty} P(A_n) = 0$$

 $2/(A_n)_n$ une suite d'évènements mutuellement independants

$$P(\bigcup_{n\in\mathbb{N}}A_n) = 1 - P((\bigcup_{n\in\mathbb{N}}A_n)^c)$$

$$= 1 - P(\bigcap_{n\in\mathbb{N}}A_n^c)$$

$$= 1 - P(\bigcap_{n\in\mathbb{N}}\overline{A_n})$$

On considère $B_n := \bigcap_{k=0}^n \overline{A_k}, n \in \mathbb{N} \Rightarrow (B_n)_n$ decroissante pour l'inclusion car

$$B_{n+1} = B_n \cap \overline{A_{n+1}} \subset B_n$$

D'aprés théorème limite décroissante:

$$\exists \lim_{n} P(B_{n}) = P(\bigcap_{n \in \mathbb{N}} B_{n})$$

$$\Rightarrow P(\bigcup_{n \in \mathbb{N}} A_{n}) = 1 - P(\bigcap_{n \in \mathbb{N}} B_{n})$$

$$= 1 - \lim_{n} P(B_{n})$$

$$= 1 - \lim_{n} P(\bigcap_{k \in \mathbb{N}} \overline{A_{k}})$$

or le systéme $(A_n)_n$ est mutuellement independant $\Rightarrow (\overline{A_n})_n$ est mutuellement independant. Donc

$$P(\bigcap_{k=0}^{n} \overline{A}_{k}) = \prod_{k=0}^{n} P(\overline{A}_{k})$$

$$\Rightarrow P(\bigcup_{n\in\mathbb{N}}^{n} A_{n}) = 1 - \lim_{n} \prod_{k=0}^{n} P(\overline{A}_{k})$$

En effet:

$$\begin{cases} \bigcap_{n\in\mathbb{N}} B_n = \bigcap_{n\in\mathbb{N}} \bigcap_{k=0}^n \overline{A}_k \subset \bigcap_{n\in\mathbb{N}} \overline{A}_n \\ \bigcap_{k\in\mathbb{N}} \overline{A}_k = (\bigcap_{k=0}^n \overline{A}_k) \cap (\bigcap_{k=n+1}^{+\infty} \overline{A}_k) \subset B_n, \quad \forall n \end{cases}$$

Donc

$$\bigcap_{n\in\mathbb{N}}\overline{A}_n\subset\bigcap_{n\in\mathbb{N}}B_n$$

b/ Montre que $\sum P(A_n)$ converge ssi $\sum \ln P((\overline{A}_n))$ converge

"
$$\Rightarrow$$
"
Si $\sum P(A_n)$ converge $\Rightarrow P(A_n) \underset{n \to \infty}{\rightarrow} 0$
 $\Rightarrow -\ln(1 - P(A_n)) \underset{n \to \infty}{\sim} P(A_n)$
 $\Rightarrow \sum \ln(1 - P(A_n))$ converge
 $\Rightarrow \sum \ln(P(\overline{A_n}))$ converge

$$\begin{array}{l} " \Leftarrow " \\ \Rightarrow \sum_{n} \ln(\ \mathrm{P}(\overline{A}_n)) \text{ converge} \Rightarrow \ln(\ \mathrm{P}(\overline{A}_n)) \to 0 \\ \Rightarrow \ln(1-\ \mathrm{P}(A_n)) \to 0 \Rightarrow \ \mathrm{P}(A_n) \underset{n \to \infty}{\to} 0 \end{array}$$

 \Rightarrow ln($P(\overline{A_n})$) = ln(1 - $P(A_n)$) \sim - $P(A_n)$ \Rightarrow \sum $P(A_n)$ converge d'où on a l'équivalence. c/ $P(A_n) \neq 1$; $\forall n$

$$\begin{split} \mathrm{P}(\cup_{n=0}^{+\infty}A_n) &= 1 \quad \Leftrightarrow \quad 1 - \lim_n \prod_{k=0}^n \, \mathrm{P}(\overline{A}_k) = 1 \\ & \Leftrightarrow \quad \lim_n \prod_{k=0}^n \, \mathrm{P}(\overline{A}_k) = 0 \\ & \Leftrightarrow \quad \lim_n \ln(\prod_{k=0}^n \, \mathrm{P}(\overline{A}_k)) = -\infty \\ & \Leftrightarrow \quad \lim_n \sum_{k=0}^n \ln \, \mathrm{P}(\overline{A}_k) = -\infty \\ & \Leftrightarrow \quad \sum \ln \, \mathrm{P}(\overline{A}_n) \quad div \\ & \Leftrightarrow \quad \sum \, \mathrm{P}(A_n) \quad div \end{split}$$

$$d/B = \bigcap_{n \in \mathbb{N}} \overline{A}_n$$
.

Montre que
$$P(B) \le \exp\left(-\sum_{n=0}^{+\infty} P(A_n)\right)$$
?

 $(B_n)_n$ est une suite decroissante d'évènements.

Théorème limite decroissante $\Rightarrow P(B) = P(\bigcap_n B_n) = \lim_n P(B_n)$

$$P(B) = \lim_{n} P(\bigcap_{k=0}^{n} \overline{A}_{k})$$

$$= \lim_{n} \prod_{k=0}^{n} P(\overline{A}_{k})$$
or $P(\overline{A}_{k}) = 1 - P(A_{k}) \le e^{-P(A_{k})}$

$$\Rightarrow P(B) \le \lim_{n} \prod_{k=0}^{n} e^{-P(A_{k})}$$

$$\le \lim_{n} e^{-\sum_{k=0}^{n} P(A_{k})}$$

$$\Rightarrow P(B) \le e^{-\sum_{k=0}^{+\infty} P(A_{k})}$$

$$e/\sum_{n\geq 0} \mathrm{P}(A_n)$$
 converge; $A=\bigcap_{p\in \mathbb{N}}\bigcup_{n\geq p}A_n$. Montre que $\mathrm{P}(A)=0$? soit $Ep=\bigcup_{n\geq p}A_n$; $\forall p\in \mathbb{N}$ $(Ep)_p$ est decroissante pour l'inclusion.

d'après théoréme limite decroissante (continuité decroissante)

$$\exists \lim_{p} P(E_{p}) = P(\bigcap_{p \in \mathbb{N}} E_{p})$$

$$\Rightarrow \lim_{p} P(E_{p}) = P(A)$$

$$\Rightarrow \lim_{p} P(\bigcup_{n \geq p} A_{n}) = P(A)$$
or
$$P(\bigcup_{n \geq p} A_{n}) \leq \sum_{n \geq p} P(A_{n})$$

$$\Rightarrow P(A) \leq \lim_{p} \sum_{n = p}^{+\infty} P(A_{n})$$

Comme
$$\sum_{n\geq 0} P(A_n)$$
 converge $\Rightarrow \sum_{n=p}^{+\infty} P(A_n) \underset{p\to\infty}{\to} 0$
 $\Rightarrow P(A) = 0$
 $P(\bigcap_{p\in\mathbb{N}} \bigcup_{n\geq p} A_n) = 0$

Variables Aléatoires Discrètes

(D) Variables Aléatoires réelles:

- \star (Ω, τ, P) un espace probabilisé
- $\star X: \Omega \to \mathbb{R}$, v.a
- $\star P_X(A) = P(X^{-1}(A)); A \subset \mathbb{R}/X^{-1}(A) \in \tau$
- \star si $A = \{a\}; a \in \mathbb{R} \Rightarrow P_X(A) = P(X = a)$
- \star si A = [a, b]; $a < b \in \mathbb{R} \Rightarrow P_X(A) = P(a \le x \le b)$
- \star si X est une v.a et $\lambda \in \mathbb{R}$ on parle aussi

$$\lambda X$$
 v.a qui à $\omega o \lambda X(\omega)$

* si Y est une autre v.a on parle de

$$\left\{ \begin{array}{l} XY \ \text{ v.a qui à } \ \omega \to X(\omega)Y(\omega) \\ \\ X+Y \ \text{ v.a qui à } \ \omega \to X(\omega)+Y(\omega) \end{array} \right.$$

(D) Loi de probabilité:

X v.a discrète i.e $X(\Omega)$ est au plus denombrable (fini ou denombrable) $X(\Omega) = \{x_i; i \in \mathbb{N}\}$ ou bien $\{x_1, ..., x_n\}$ $P_i = P[X = x_i]$

$$\sum_{i} P_{i} = \sum_{i} P[X = x_{i}] = \sum_{i} P(X^{-1}(\{x_{i}\}))$$

$$= P(\Omega) = 1$$

$$\Rightarrow \sum_{i} P_{i} = 1$$

(D) Fonction de répartition:

$$\forall x \in \mathbb{R}, F(x) = P[X \le x] \le 1$$

(D) Couple de v.a:

X et Y deux v.a discrétes ayant le même espace probabilisé (Ω, τ, P)

$$X(\Omega) = \{x_i; i \in I\}$$

$$Y(\Omega) = \{y_i; i \in J\}$$

I et J sont au plus denombrables (deux Parties de \mathbb{N}).

$$P(X = x_i; \text{ et } Y = y_i) = P_{ij}$$

$$P(X = x_i) = \sum_{j \in J} P_{ij} = P_i.$$

$$P(Y = y_i) = \sum_{i \in I} P_{ij} = P_{ij}$$

$$\Rightarrow \sum_{i \in I} P_{i \cdot} = 1.$$
$$\sum_{j \in J} P_{\cdot j} = 1$$

$$\sum_{i \in I} \sum_{j \in J} P_{ij} = \sum_{j \in J} \sum_{i \in I} P_{ij} = 1$$

Loi conditionnelle:

$$P(X = x_i/Y = y_j) = \frac{P(X = x_i \text{ et } Y = y_j)}{P(Y = y_j)}$$

$$= \frac{p_{ij}}{p_{.j}}$$

$$P(Y = y_j/X = x_i) = \frac{p_{ij}}{p_{i.}}$$

(D) Independance:

X et Y sont indépendants si

$$P[X=x_i \text{ et } Y=y_j]=p_{i\cdot}\times p_{\cdot j}=P[X=x_i]P[Y=y_j] \quad \forall i\in I;\ j\in J.$$